Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.076
Filtrar
1.
Commun Biol ; 7(1): 494, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658802

RESUMO

Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.


Assuntos
Encéfalo , Herpesvirus Humano 1 , Vírus La Crosse , Camundongos Knockout , Monócitos , Receptores CCR2 , Receptores CCR7 , Animais , Receptores CCR2/metabolismo , Receptores CCR2/genética , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/imunologia , Herpesvirus Humano 1/fisiologia , Vírus La Crosse/genética , Vírus La Crosse/fisiologia , Receptores CCR7/metabolismo , Receptores CCR7/genética , Encefalite da Califórnia/virologia , Encefalite da Califórnia/genética , Encefalite da Califórnia/metabolismo , Encefalite da Califórnia/imunologia , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/virologia , Feminino , Masculino
2.
Cytokine ; 178: 156579, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471419

RESUMO

The aim of this study was to evaluate the effect of non-surgical periodontal treatment in the expression of chemokine receptors, in individuals with Periodontitis, associated or not with Diabetes. Pilot study, which included patients (n = 45) with Periodontitis, associated (n = 25) or not (n = 20) with Diabetes, submitted to the non-surgical periodontal treatment for one month. The expression of chemokine receptors CCR2, CCR5, and CX3CR1 at the mRNA level was evaluated in the peripheral mononuclear cells, as well as the expression of these receptors at the protein level was verified in monocyte subtypes (classical, intermediate, and non-classical monocytes). There was higher expression of CCR2 and CCR5 receptors at the initial visit in the group with Diabetes, with no differences for CX3CR1 (p = 0.002; p = 0.018, and p = 0.896, respectively), without differences after treatment. There was higher expression of CCR2 and CCR5 proteins in the group with Diabetes at the initial visit for classical, intermediate, and nonclassical monocytes, with no differences for CX3CR1 (CCR2: p = 0.004; p = 0.026; p = 0.024; CCR5: 0.045; p = 0.045; p = 0.013; CX3CR1: p = 0.424; p = 0.944; p = 0.392, respectively), without differences after the end of treatment. Concerning each group separately, there were reductions in the expression of CCR2 as well as CCR5 in classical, intermediate, and nonclassical monocytes, and reduction of CX3CR1 in classical monocytes after treatment in the group with Diabetes (p = 0.003; p = 0.006; p = 0.039; p = 0.007; p = 0.006; p = 0.004; p = 0.019, respectively), without differences in the group without Diabetes. The expression of the chemokine receptors CCR2 and CCR5, in patients with Periodontitis associated with Diabetes, is favorably modified after the end of the non-surgical periodontal treatment.


Assuntos
Diabetes Mellitus , Periodontite , Humanos , Monócitos/metabolismo , Projetos Piloto , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Diabetes Mellitus/metabolismo , Periodontite/terapia , Periodontite/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo
3.
J Exp Clin Cancer Res ; 43(1): 76, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468260

RESUMO

BACKGROUND: While T cell-activating immunotherapies against recurrent head and neck squamous cell carcinoma (HNSCC) have shown impressive results in clinical trials, they are often ineffective in the majority of patients. NK cells are potential targets for immunotherapeutic intervention; however, the setback in monalizumab-based therapy in HNSCC highlights the need for an alternative treatment to enhance their antitumor activity. METHODS: Single-cell RNA sequencing (scRNA-seq) and TCGA HNSCC datasets were used to identify key molecular alterations in NK cells. Representative HPV-positive ( +) and HPV-negative ( -) HNSCC cell lines and orthotopic mouse models were used to validate the bioinformatic findings. Changes in immune cells were examined by flow cytometry and immunofluorescence. RESULTS: Through integration of scRNA-seq data with TCGA data, we found that the impact of IL6/IL6R and CCL2/CCR2 signaling pathways on evasion of immune attack by NK cells is more pronounced in the HPV - HNSCC cohort compared to the HPV + HNSCC cohort. In orthotopic mouse models, blocking IL6 with a neutralizing antibody suppressed HPV - but not HPV + tumors, which was accompanied by increased tumor infiltration and proliferation of CD161+ NK cells. Notably, combining the CCR2 chemokine receptor antagonist RS504393 with IL6 blockade resulted in a more pronounced antitumor effect that was associated with more activated intratumoral NK cells in HPV - HNSCC compared to either agent alone. CONCLUSIONS: These findings demonstrate that dual blockade of IL6 and CCR2 pathways effectively enhances the antitumor activity of NK cells in HPV-negative HNSCC, providing a novel strategy for treating this type of cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Animais , Camundongos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Interleucina-6/metabolismo , Infecções por Papillomavirus/complicações , Recidiva Local de Neoplasia/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Células Matadoras Naturais , Receptores CCR2/genética , Receptores CCR2/metabolismo
4.
Stem Cell Reports ; 19(3): 414-425, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38428413

RESUMO

Myeloid cells, which originate from hematopoietic stem/progenitor cells (HSPCs), play a crucial role in mitigating infections. This study aimed to explore the impact of mesenchymal stem/stromal cells (MSCs) on the differentiation of HSPCs and progenitors through the C-C motif chemokine CCL2/CCR2 signaling pathway. Murine MSCs, identified as PDGFRα+Sca-1+ cells (PαS cells), were found to secrete CCL2, particularly in response to lipopolysaccharide stimulation. MSC-secreted CCL2 promoted the differentiation of granulocyte/macrophage progenitors into the myeloid lineage. MSC-derived CCL2 plays an important role in the early phase of myeloid cell differentiation in vivo. Single-cell RNA sequencing analysis confirmed that CCL2-mediated cell fate determination was also observed in human bone marrow cells. These findings provide valuable insights for investigating the in vivo effects of MSC transplantation.


Assuntos
Quimiocina CCL2 , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , Diferenciação Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Transdução de Sinais
5.
J Cell Physiol ; 239(4): e31192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284280

RESUMO

Obesity and metabolic diseases, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments, represent formidable global health challenges, bearing considerable implications for both morbidity and mortality rates. It has become increasingly evident that chronic, low-grade inflammation plays a pivotal role in the genesis and advancement of these conditions. The involvement of C-C chemokine ligand 2 (CCL2) and its corresponding receptor, C-C chemokine receptor 2 (CCR2), has been extensively documented in numerous inflammatory maladies. Recent evidence indicates that the CCL2/CCR2 pathway extends beyond immune cell recruitment and inflammation, exerting a notable influence on the genesis and progression of metabolic syndrome. The present review seeks to furnish a comprehensive exposition of the CCL2-CCR2 signaling axis within the context of obesity and metabolic disorders, elucidating its molecular mechanisms, functional roles, and therapeutic implications.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Humanos , Receptores de Quimiocinas , Quimiocina CCL2/metabolismo , Ligantes , Quimiocinas , Inflamação , Obesidade , Receptores CCR2/metabolismo
6.
J Pharm Pharmacol ; 76(2): 138-153, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38127312

RESUMO

BACKGROUND: The chemokine ligand CCL2 and its cognate receptor CCR2 have been implicated in the pathogenesis of a wide variety of diseases. Hence, the inhibition of the CCL2/CCR2 signaling pathway has been of great attention in recent studies. Among suggested medications, statins known as HMG-COA reductase inhibitors with their pleiotropic effects are widely under investigation. METHOD: A comprehensive literature search on Scopus and PubMed databases was conducted using the keywords 'CCL2', 'CCR2', 'monocyte chemoattractant protein-1', 'HMG-COA reductase inhibitor', and 'statin'. Both experimental and clinical studies measuring CCL2/CCR2 expressions following statin therapy were identified excluding the ones focused on cardiovascular diseases. RESULTS: Herein, we summarized the effects of statins on CCL2 and CCR2 expression in various pathologic conditions including immune-mediated diseases, nephropathies, diabetes, rheumatic diseases, neuroinflammation, inflammatory bowel diseases, gynecologic diseases, and cancers. CONCLUSION: For the most part, statins play an inhibitory role on the CCL2-CCR2 axis which implies their potential to be further developed as therapeutic options in non-cardiovascular diseases either alone or in combination with other conventional treatments. However, the existing literature mostly focused on experimental models and is therefore inadequate to reach a conclusion.


Assuntos
Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Inflamatórias Intestinais , Neoplasias , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Quimiocina CCL2/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico , Receptores CCR2/metabolismo
7.
Cell ; 187(2): 390-408.e23, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38157855

RESUMO

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.


Assuntos
Proteinose Alveolar Pulmonar , Receptores CCR2 , Criança , Humanos , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/diagnóstico , Receptores CCR2/deficiência , Receptores CCR2/genética , Receptores CCR2/metabolismo , Reinfecção/metabolismo
8.
Medicine (Baltimore) ; 102(42): e35613, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861543

RESUMO

Renal fibrosis is a common pathological manifestation in various chronic kidney diseases. Inflammation plays a central role in renal fibrosis development. Owing to their significant participation in inflammation and autoimmunity, chemokines have always been the hot spot and focus of scientific research and clinical intervention. Among the chemokines, monocyte chemoattractant protein-1 (MCP-1), also known as C-C motif chemokine ligand 2, together with its main receptor C-C chemokine receptor type 2 (CCR2) are important chemokines in renal fibrosis. The MCP-1/CCR2 axis is activated when MCP-1 binds to CCR2. Activation of MCP-1/CCR2 axis can induce chemotaxis and activation of inflammatory cells, and initiate a series of signaling cascades in renal fibrosis. It mediates and promotes renal fibrosis by recruiting monocyte, promoting the activation and transdifferentiation of macrophages. This review summarizes the complex physical processes of MCP-1/CCR2 axis in renal fibrosis and addresses its general mechanism in renal fibrosis by using specific examples, together with the progress of targeting MCP-1/CCR2 in renal fibrosis with a view to providing a new direction for renal fibrosis treatment.


Assuntos
Nefropatias , Receptores CCR2 , Humanos , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Fibrose , Inflamação , Receptores CCR2/metabolismo
9.
Front Biosci (Landmark Ed) ; 28(9): 223, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37796701

RESUMO

BACKGROUND: Macrophages expressing CC chemokine receptor 2 (CCR2) possess characteristics and performance akin to M1 polarized macrophages, which promote inflammation. Advanced heart failure (HF) patients with higher abundance of CCR2+ macrophages are more likely to experience adverse remodeling. The precise mechanism of CCR2+ macrophages in how they affect the progression of dilated cardiomyopathy remains unknown. METHODS: Cardiac biopsy samples from dilated cardiomyopathy patients (DCM) were used for immunohistochemistry and immunofluorescence staining. PCR is employed to identify the IL-1ß, IL-6, TNF-α, TGF-ß, MMP2, MMP9, PKM1, PKM1, GLUT1, GLUT2, GLUT3, GLUT4, PDK1, PFKFB3, PFK1 and HK2 mRNA expression of CCR2+ monocytes/macrophages from the peripheral blood of DCM patients. Seahorse was used to evaluate the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of CCR2+ monocytes/macrophages. 2-DG was used to simulate a lack of glucose. Lentivirus containing GLUT1 inhibitory sequence was used to knockdown GLUT1 gene expression of CCR2+ monocytes/macrophages. Western Blot and immunofluorescence staining was used to evaluate the expression of NLRP3. RESULTS: Immunostaining results of cardiac biopsy tissue from dilated cardiomyopathy (DCM) patients demonstrated that the progression to HF was associated with an increase in the number of CCR2+ macrophages. PCR results demonstrated that CCR2 monocytes and macrophages derived from the blood of DCM patients expressed elevated levels of inflammatory factors and up regulation of glycolysis related genes. In addition, OCR and glucose uptake experiments confirmed that increased glucose uptake of these cells was associated with greater inflammation and correlated with a worsening of cardiac function. limiting the glucose supply to CCR2+ monocytes and macrophages, or suppressing the activity of glucose transporter 1 (GLUT1) could reduce inflammation levels. CONCLUSIONS: These results suggest that CCR2+ monocytes and macrophages rely on metabolic reprogramming to trigger inflammatory response and contribute to myocardial injury and the progression of DCM.


Assuntos
Cardiomiopatia Dilatada , Monócitos , Humanos , Monócitos/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Glucose/metabolismo
10.
Sci Adv ; 9(31): eadg6856, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531422

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus causing a high fatality rate of up to 30%. To date, the receptor mediating SFTSV entry remained uncharacterized, hindering the understanding of disease pathogenesis. Here, C-C motif chemokine receptor 2 (CCR2) was identified as a host receptor for SFTSV based on a genome-wide CRISPR-Cas9 screen. Knockout of CCR2 substantially reduced viral binding and infection. CCR2 enhanced SFTSV binding through direct binding to SFTSV glycoprotein N (Gn), which is mediated by its N-terminal extracellular domain. Depletion of CCR2 in C57BL/6J mouse model attenuated SFTSV replication and pathogenesis. The peripheral blood primary monocytes from elderly individuals or subjects with underlying diabetes mellitus showed higher CCR2 surface expression and supported stronger binding and replication of SFTSV. Together, these data indicate that CCR2 is a host entry receptor for SFTSV infection and a novel target for developing anti-SFTSV therapeutics.


Assuntos
Phlebovirus , Receptores CCR2 , Febre Grave com Síndrome de Trombocitopenia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Phlebovirus/metabolismo , Receptores CCR2/metabolismo
11.
Cell Rep ; 42(8): 112881, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37523265

RESUMO

Conventional dendritic cells (cDCs) are found in most tissues and play a key role in initiation of immunity. cDCs require constant replenishment from progenitors called pre-cDCs that develop in the bone marrow (BM) and enter the blood circulation to seed all tissues. This process can be markedly accelerated in response to inflammation (emergency cDCpoiesis). Here, we identify two populations of BM pre-cDC marked by differential expression of CXCR4. We show that CXCR4lo cells constitute the migratory pool of BM pre-cDCs, which exits the BM and can be rapidly mobilized during challenge. We further show that exit of CXCR4lo pre-cDCs from BM at steady state is partially dependent on CCR2 and that CCR2 upregulation in response to type I IFN receptor signaling markedly increases efflux during infection with influenza A virus. Our results highlight a fine balance between retention and efflux chemokine cues that regulates steady-state and emergency cDCpoiesis.


Assuntos
Medula Óssea , Células Dendríticas , Receptores CCR2 , Receptores CXCR4 , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Inflamação/metabolismo , Receptores CCR2/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Animais
12.
Neoplasia ; 43: 100920, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515847

RESUMO

BACKGROUND: Most patients with resected bile tract cancers (BTCs) survive for less than 5 years; however, some achieve better prognosis. The tumor microbiome can improve survival by regulating the tumor immune microenvironment. However, whether the tumor microbiome promotes immune cell infiltration in BTCs is unknown. This study aimed to determine the association between CD8+ T lymphocyte infiltration and the tumor microbiome in patients with resected BTCs. METHODS: Archived formalin-fixed paraffin-embedded tumor specimens were collected from patients with resected BTCs and analyzed using 16S rRNA gene sequencing to identify that prognosis-related and significantly differentially enriched taxa. Gene ontology (GO) analysis of the differentially enriched taxa was used to assess how CD8+ T lymphocyte infiltration is affected by the tumor microbiome of BTCs. RESULTS: We enrolled 32 patients with resected BTCs. The high CD8+ lymphocyte-infiltration (CD8hi) group had four significantly enriched taxa, and in the low CD8+ lymphocyte-infiltration (CD8low) group comprised one significantly enriched taxon. Patients with higher Clostridia abundance (enriched in the CD8hi group) experienced longer overall survival than those with lower abundance. The enrichment of Clostridia in the CD8hi group corresponded with lower CCL2 expression and downregulation of phosphatidylinositol 3-kinase activity, which might decrease myeloid-derived suppressor cell recruitment to the tumor milieu, thus increasing CD8+ lymphocyte infiltration in BTCs. CONCLUSIONS: The tumor microbiome is related to CD8+ T lymphocyte infiltration in patients with resected BTCs. The relationship between tumor Clostridia and high infiltration of CD8+ T lymphocytes might reflect decreased recruitment of myeloid-derived suppressor cells via the PI3K-CCL2-CCR2 axis.


Assuntos
Neoplasias dos Ductos Biliares , Linfócitos T CD8-Positivos , Colangiocarcinoma , Clostridium , Linfócitos do Interstício Tumoral , Microbiota , Humanos , Linfócitos T CD8-Positivos/imunologia , Quimiocina CCL2/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Células Supressoras Mieloides/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Receptores CCR2/metabolismo , RNA Ribossômico 16S , Microambiente Tumoral/genética , Colangiocarcinoma/imunologia , Colangiocarcinoma/microbiologia , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/microbiologia , Clostridium/imunologia
13.
Sci Rep ; 13(1): 12218, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500699

RESUMO

Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by the activation of monocyte-derived cells and the release of neutrophil extracellular traps (NET). C-C motif ligand (CCL) 2 is a chemoattractant that interacts with the C-C motif chemokine receptor (CCR) 2, resulting in monocyte recruitment and activation. CCL2 and CCR2 were measured with enzyme-linked immunosorbent assay (ELISA) at the serum level, and using immunohistochemical staining at the skin and lymph node tissues levels. THP-1 cell lysates were analyzed using western blot and ELISA after NET stimulation in patients with AOSD. Serum CCL2 level was higher in patients with AOSD than in patients with rheumatoid arthritis and healthy controls (HCs). In patients with AOSD, the percentage of CCL2-positive inflammatory cells in the skin tissues and CCR2-positive inflammatory cells in the lymph nodes increased, compared to that in HCs and in patients with reactive lymphadenopathy, respectively. NET induced in patients with AOSD enhanced the secretion of CCR2, higher CCR2 expression in monocytes, and the levels of interleukin (IL)-1ß, IL-6, and IL-18 from THP-1 cells. Our findings suggest that upregulation of the CCL2-CCR2 axis may contribute to the clinical and inflammatory characteristics of AOSD.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Doença de Still de Início Tardio , Adulto , Humanos , Armadilhas Extracelulares/metabolismo , Artrite Reumatoide/metabolismo , Pele/metabolismo , Receptores de Quimiocinas/metabolismo , Quimiocina CCL2/metabolismo , Receptores CCR2/metabolismo
14.
Cytokine ; 169: 156292, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437448

RESUMO

C-C motif chemokine receptor 2 (CCR2), together with its ligands, especially C-C motif ligand 2 (CCL2), to which CCR2 has the highest affinity, form a noteworthy signaling pathway in recruiting macrophages for the immune responses among variegated disorders in vivo environment. Scientometric methods are used to analyze intestine-related CCR2 expression. We describe the current knowledge on biological function of CCR2 in physiological intestine in three dimensions, namely its effects on stromal cells, angiogenesis, and remodeling. However, anomalous expression of CCR2 has also been conveyed to correlate with detrimental outcomes in intestine, such as infective colitis, inflammatory bowel disease, carcinogenesis, and colon-related metastasis. In this article, we briefly summarize recent experimental works on CCR2 and its ligands, mostly CCL2, in intestinal-related physiological and pathological states to ravel out their working mechanisms in intestinal diseases.


Assuntos
Receptores CCR2 , Transdução de Sinais , Ligantes , Receptores CCR2/metabolismo , Quimiocinas , Intestinos , Quimiocina CCL2/metabolismo
15.
Int Immunopharmacol ; 122: 110570, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390649

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune disease with a global incidence of approximately 1%. Its complex pathogenesis makes the development of RA-related therapeutics very difficult. Existing drugs for RA have many side effects and are prone to drug resistance. One potential target for RA drugs includes C-Cchemokinereceptortype2 (CCR2), which belongs to the G protein-coupled receptor family. A series of RA drugs targeting CCR2 have been developed; however, the pre-clinical and clinical research results for CCR2 antagonists are inconsistent. We found that CCR2 was also expressed in primary Fibroblast-like synoviocyte (FLS) from patients with RA. CCR2 antagonists can inhibit inflammatory cytokines and matrix metalloproteinases released by RA-FLS but do not affect the proliferation and migration ability of RA-FLS. In addition, CCR2 antagonist-treated RA-FLS indirectly repressed macrophage-mediated inflammation and rescued the viability of chondrocytes. Finally, a CCR2 antagonist ameliorated the collagen-induced arthritic (CIA). CCR2 antagonists may exert anti-inflammatory effects on RA-FLS by inhibiting the JAK-STAT pathway. In summary, a CCR2 antagonist can exert anti-inflammatory effects by acting on RA-FLS. This study provides a new experimental basis for the use of CCR2 antagonists in the development of RA drugs.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Janus Quinases/metabolismo , Transdução de Sinais , Proliferação de Células , Fatores de Transcrição STAT/metabolismo , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Fibroblastos/metabolismo , Membrana Sinovial/patologia , Células Cultivadas , Receptores CCR2/metabolismo
16.
Nat Commun ; 14(1): 2632, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149684

RESUMO

Cancer metastasis to the brain is a significant clinical problem. Metastasis is the consequence of favorable interactions between invaded cancer cells and the microenvironment. Here, we demonstrate that cancer-activated astrocytes create a sustained low-level activated type I interferon (IFN) microenvironment in brain metastatic lesions. We further confirm that the IFN response in astrocytes facilitates brain metastasis. Mechanistically, IFN signaling in astrocytes activates C-C Motif Chemokine Ligand 2 (CCL2) production, which further increases the recruitment of monocytic myeloid cells. The correlation between CCL2 and monocytic myeloid cells is confirmed in clinical brain metastasis samples. Lastly, genetically or pharmacologically inhibiting C-C Motif Chemokine Receptor 2 (CCR2) reduces brain metastases. Our study clarifies a pro-metastatic effect of type I IFN in the brain even though IFN response has been considered to have anti-tumor effects. Moreover, this work expands our understandings on the interactions between cancer-activated astrocytes and immune cells in brain metastasis.


Assuntos
Neoplasias Encefálicas , Interferon Tipo I , Humanos , Interferon Tipo I/metabolismo , Astrócitos/metabolismo , Quimiocina CCL2/metabolismo , Células Mieloides/metabolismo , Neoplasias Encefálicas/patologia , Receptores CCR2/metabolismo , Microambiente Tumoral
17.
Mucosal Immunol ; 16(4): 432-445, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172907

RESUMO

Allergic asthma is a chronic lung disease characterized by airway hyperresponsiveness and cellular infiltration that is exacerbated by immunoglobulin E-dependent mast cell (MC) activation. Interleukin-9 (IL-9) promotes MC expansion during allergic inflammation but precisely how IL-9 expands tissue MCs and promotes MC function is unclear. In this report, using multiple models of allergic airway inflammation, we show that both mature MCs (mMCs) and MC progenitors (MCp) express IL-9R and respond to IL-9 during allergic inflammation. IL-9 acts on MCp in the bone marrow and lungs to enhance proliferative capacity. Furthermore, IL-9 in the lung stimulates the mobilization of CCR2+ mMC from the bone marrow and recruitment to the allergic lung. Mixed bone marrow chimeras demonstrate that these are intrinsic effects in the MCp and mMC populations. IL-9-producing T cells are both necessary and sufficient to increase MC numbers in the lung in the context of allergic inflammation. Importantly, T cell IL-9-mediated MC expansion is required for the development of antigen-induced and MC-dependent airway hyperreactivity. Collectively, these data demonstrate that T cell IL-9 induces lung MC expansion and migration by direct effects on the proliferation of MCp and the migration of mMC to mediate airway hyperreactivity.


Assuntos
Asma , Interleucina-9 , Mastócitos , Receptores CCR2 , Asma/metabolismo , Movimento Celular , Proliferação de Células , Inflamação/metabolismo , Interleucina-9/metabolismo , Pulmão/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Animais
18.
Int J Biol Sci ; 19(8): 2572-2587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215993

RESUMO

The accumulation of extracellular matrix (ECM) proteins in the liver leads to liver fibrosis and end-stage liver cirrhosis. C-C motif chemokine receptor 2 (CCR2) is an attractive target for treating liver fibrosis. However, limited investigations have been conducted to explore the mechanism by which CCR2 inhibition reduces ECM accumulation and liver fibrosis, which is the focus of this study. Liver injury and liver fibrosis were induced by carbon tetrachloride (CCl4) in wild-type mice and Ccr2 knockout (Ccr2-/-) mice. CCR2 was upregulated in murine and human fibrotic livers. Pharmacological CCR2 inhibition with cenicriviroc (CVC) reduced ECM accumulation and liver fibrosis in prevention and treatment administration. In single-cell RNA sequencing (scRNA-seq), CVC was demonstrated to alleviate liver fibrosis by restoring the macrophage and neutrophil landscape. CVC administration and CCR2 deletion can also inhibit the hepatic accumulation of inflammatory FSCN1+ macrophages and HERC6+ neutrophils. Pathway analysis indicated that the STAT1, NFκB, and ERK signaling pathways might be involved in the antifibrotic effects of CVC. Consistently, Ccr2 knockout decreased phosphorylated STAT1, NFκB, and ERK in the liver. In vitro, CVC could transcriptionally suppress crucial profibrotic genes (Xaf1, Slfn4, Slfn8, Ifi213, and Il1ß) in macrophages by inactivating the STAT1/NFκB/ERK signaling pathways. In conclusion, this study depicts a novel mechanism by which CVC alleviates ECM accumulation in liver fibrosis by restoring the immune cell landscape. CVC can inhibit profibrotic gene transcription via inactivating the CCR2-STAT1/NFκB/ERK signaling pathways.


Assuntos
Cirrose Hepática , Fígado , Receptores CCR2 , Animais , Humanos , Camundongos , Quimiocinas/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Receptores CCR2/metabolismo
19.
Anticancer Res ; 43(6): 2561-2569, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247914

RESUMO

BACKGROUND/AIM: Developing resistance to cabazitaxel is a major challenge in patients with docetaxel- and castration-resistant prostate cancer (CRPC) since it is frequently administered as a last resort. We have previously reported that CCL2 induces resistance to the antiproliferative effect of cabazitaxel in DU145-TxR/CxR prostate cancer cell lines. However, how CCL2 induces resistance to the antimigration effect of cabazitaxel remains unclear. MATERIALS AND METHODS: We established a cabazitaxel-resistant cell line, DU145-TxR/CxR, from a previously established paclitaxel-resistant cell line, DU145-TxR, which was confirmed to show docetaxel resistance. We performed migration assay and analyzed the expression of epithelial-mesenchymal transition markers using DU145-TxR/CxR with or without CCL2 silencing with small interfering RNA (siRNA) transfection. RESULTS: Cabazitaxel inhibited the migration of DU145 cells through the inactivation of STAT3. A CCR2 (a specific receptor of CCL2) antagonist suppressed the migration of DU145-TxR and DU145-TxR/CxR cells under cabazitaxel treatment. Western blotting revealed that the CCR2 antagonist inhibited STAT3 phosphorylation in DU145-TxR and DU145-TxR/CxR cells under cabazitaxel treatment. CCL2 silencing with siRNA in DU145-TxR and DU145-TxR/CxR cells decreased migration through STAT3 and p38 inactivation. Furthermore, CCL2 activated AKT, and CCR2 antagonist inhibited AKT phosphorylation in DU145-TxR and DU145-TxR/CxR cells with recovery of sensitivity to cabazitaxel under cabazitaxel treatment. CONCLUSION: The CCL2-CCR2 axis is a key contributor to resistance to the antimigration effect of cabazitaxel in prostate cancer cells. CCL2-CCR2 axis inhibition may be a potential therapeutic target against chemoresistant CRPC in combination with cabazitaxel.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno/genética , Quimiocina CCL2/genética , Receptores CCR2/genética , Receptores CCR2/metabolismo
20.
Mol Pain ; 19: 17448069231169373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998150

RESUMO

BACKGROUND: Chemokine-mediated neuroinflammation plays an important role in the pathogenesis of neuropathic pain. The chemokine CC motif ligand 7 (CCL7) and its receptor CCR2 have been reported to contribute to neuropathic pain via astrocyte-microglial interaction in the spinal cord. Whether CCL7 in the trigeminal ganglion (TG) involves in trigeminal neuropathic pain and the involved mechanism remain largely unknown. METHODS: The partial infraorbital nerve transection (pIONT) was used to induce trigeminal neuropathic pain in mice. The expression of Ccl7, Ccr1, Ccr2, and Ccr3 was examined by real-time quantitative polymerase chain reaction. The distribution of CCL7, CCR2, and CCR3 was detected by immunofluorescence double-staining. The activation of extracellular signal-regulated kinase (ERK) was examined by Western blot and immunofluorescence. The effect of CCL7 on neuronal excitability was tested by whole-cell patch clamp recording. The effect of selective antagonists for CCR1, CCR2, and CCR3 on pain hypersensitivity was checked by behavioral testing. RESULTS: Ccl7 was persistently increased in neurons of TG after pIONT, and specific inhibition of CCL7 in the TG effectively relieved pIONT-induced orofacial mechanical allodynia. Intra-TG injection of recombinant CCL7 induced mechanical allodynia and increased the phosphorylation of ERK in the TG. Incubation of CCL7 with TG neurons also dose-dependently enhanced the neuronal excitability. Furthermore, pIONT increased the expression of CCL7 receptors Ccr1, Ccr2, and Ccr3. The intra-TG injection of the specific antagonist of CCR2 or CCR3 but not of CCR1 alleviated pIONT-induced orofacial mechanical allodynia and reduced ERK activation. Immunostaining showed that CCR2 and CCR3 are expressed in TG neurons, and CCL7-induced hyperexcitability of TG neurons was decreased by antagonists of CCR2 or CCR3. CONCLUSION: CCL7 activates ERK in TG neurons via CCR2 and CCR3 to enhance neuronal excitability, which contributes to the maintenance of trigeminal neuropathic pain. CCL7-CCR2/CCR3-ERK pathway may be potential targets for treating trigeminal neuropathic pain.


Assuntos
Quimiocina CCL7 , MAP Quinases Reguladas por Sinal Extracelular , Neuralgia , Neuralgia do Trigêmeo , Animais , Camundongos , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Quimiocina CCL7/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases , Neuralgia/metabolismo , Gânglio Trigeminal/metabolismo , Neuralgia do Trigêmeo/metabolismo , Receptores CCR2/metabolismo , Receptores CCR3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...